Starbeamrainbowlabs

Stardust
Blog


Archive

Mailing List Articles Atom Feed Comments Atom Feed Twitter Reddit Facebook

Tag Cloud

3d account algorithms android announcement architecture archives arduino artificial intelligence artix assembly async audio bash batch blog bookmarklet booting c sharp c++ challenge chrome os code codepen coding conundrums coding conundrums evolved command line compilers compiling compression css dailyprogrammer debugging demystification distributed computing documentation downtime electronics email embedded systems encryption es6 features event experiment external first impressions future game github github gist gitlab graphics hardware hardware meetup holiday holidays html html5 html5 canvas infrastructure interfaces internet io.js jabber javascript js bin labs learning library linux low level lua maintenance manjaro network networking node.js operating systems performance photos php pixelbot portable privacy problem solving programming problems project projects prolog protocol protocols pseudo 3d python reddit reference release releases resource review rust secrets security series list server software sorting source code control statistics storage svg technical terminal textures three thing game three.js tool tutorial tutorials twitter ubuntu university update updates upgrade version control virtual reality virtualisation visual web website windows windows 10 xmpp xslt

#movingtogitlab: What's up, Thoughts, and First Impressions

I'm moving some of my repositories to GitLab! Read on to find out why.

You've probably heard by now that GitHub has been bought by Microsoft. It was certainly huge news at the time! While I did tweet at the time (also here too), I've been waiting until I've gotten all of the repositories I've decided to move over to GitLab settled in before blogging about the experience and sharing my thoughts.

While I've got some of them settled in (you can tell which ones I've done because they are public on GitLab and I've deleted the GitHub repository in most cases), I've still got a fair few to go - there should be 13 in total on GitLab once I'm finished.

Since it's taking me longer than I anticipated to properly update them after the transfer (which in and of itself was actually really quick and painless - thanks GitLab!), I thought I'd blog about the experience so far - as it's probably going to be a little while before I've got all my repositories sorted :P

What's up?

Firstly, Microsoft. Buying GitHub. Who'd have thought it? I know that I was certainly surprised. I even had to check multiple websites to triple-check that I wasn't seeing things.... GitHub have certainly done an excellent job of hiding that fact that they were looking for a buyer. Upon further inspection, it appears that the issues GitHub have been facing are twofold. Firstly, they've been without a boss of the company for quite a while, and from the way things are looking, they are having a little bit of trouble finding a new one. Secondly, there's been talk that they haven't been making enough money.

Let's back up a second. How does GitHub actually make money? Good question. The answer is surprisingly simple: GitHub Enterprise - which is a version of GitHUb for businesses that they can host on their own servers for a significant fee. From what I can tell, it's targeted at medium-to-large companies.

If they aren't making enough money to sustain themselves, then something obviously needs to be done about that, or the github.com service that open-source developers the world over suddenly vanish overnight O.o! This presents GitHub with a very awkward problem. In this case, they chose to seek a buyer, who could then perhaps help them to sell GitHub Enterprise better.

Looking at the alternative companies, I think that GitHub could have done a lot worse than Microsoft. Alternatives include Apple (who operate a gigantic walled garden called macOS and iOS), IBM (International Business Machines, who sell big and powerful mainframes to other big and powerful businesses. Most of the time, we - or I at least - don't hear from them, unless they are showing off some research or other that they've just completed), and Facebook (who don't have a particularly great reputation right now). The problem is that they need a big company who have lots of money, because they are also a big company (so they'll be worth a lot of money, like it or not. Also, in order to sort out the money making issue they'll need cash in the meantime).

Microsoft ha ve been quite active in the open-source scene as of late, and seem to really have changed their tune in recent years, with their open-sourcing of large parts of the .NET framework - and their code editor Visual Studio Code. While they aren't the best at naming things (I'm looking at you, .NET Core / .NET Standard / .....), they do appear to be more in-line with GitHub's goals and ethics than alternative companies, as discussed above.

What's the problem?

So why do I have a problem with this deal? Clearly, Microsoft are the best of the bunch to have bought GitHub. It could be a lot worse. Microsoft have even announced that GitHub can continue to operate as a separate entity. The new boss of GitHub did an Ask Me Anything on reddit, and he seems like a really cool guy, and genuinely wants the best for GitHub.

Well, it's complicated. For me, it all boils down to independence. GitHub is (or was) an independent company. To that end, they can make their own decisions, and aren't being told what to or at risk of being told what to do by someone else. They aren't being influenced by someone else. That's not to say that GitHub will now be influenced by Microsoft (though they probably will be) - and it's not to say that it's a bad thing.

Coupled with the some 85 million open-source repositories, 28 million developers using the service, and 1.8 million businesses utilising github.com, it's a huge responsibility. In order to effectively serve the community that has grown around github.com, I feel that GitHub has to remain impartial. It's absolutely essential. The number of different workflows, tools, programs, operating systems, and more that those 28 million developers use will be staggering - and I feel that only a completely independent GitHub will truly be able to meet the needs of that community. Microsoft is great for some things, but taking on GitHub is asking them to actively support users of one of their services using their competitors software, such as Linux - or devices running macOS.

What's the alternative then?

That's huge ask, and I guess only time will tell whether they are able to pull it off. I find myself asking though: What's the alternative? if they are losing money as the rumours say, then what could they do about it?

Obviously, I don't and can't know everything that's going on inside GitHub - I can only read marketing-y web articles, theorise, and make guesses. I'm sure they've tried it, but I don't see why they can't enter a partnership with Microsoft instead. How about a partnership in which Microsoft helps sell GitHub Enterprise, and they get a cut of the profits in return? Microsoft have a much bigger base on enterprisey companies, so they'd be much better placed to do that part of things, and GitHub would be able to retain it's independence.

Where does GitLab fit into this puzzle?

All of this brings me to GitLab. Similar to GitHub, GitLab offers free code hosting on gitlab.com, along with free continuous integration. Unlike GitHub though, GitLab's source code is open - and you can download and run your own instance if you like! They sell support packages to businesses - thereby making enough money to support the continued development of GitLab. I think that they sell a few additional features with GitLab Enterprise too - but they aren't anything that the average user would want - only businesses. The also do a free package for students and open-source developers too - all whilst staying and independent company. Very cool.

As of today, I'm moving a total of 13 of my smaller repositories to GitLab. My reasoning here is that I really don't want to keep all my eggs in one basket. By moving some repositories to GitLab, I can ensure that if one or the other goes in a direction I seriously object to, I've got an alternative that I'm familiar with that I can move all my repositories to in a hurry.

I've used GitLab before. Last academic year (2016 / 2017) I interned at a local company, at which I helped to move over to Git as their primary version-control system. To that end, they chose GitLab as the server they'd use for the job - and so I got quite a bit of experience with it!

I'd use it for my personal git server but unfortunately it uses far too many resources - which I can't currently dedicate to it full-time - so I use Gitea, a lighter-weight alternative.

How does GitLab compare?

Back to the matter at hand. The experience with gitlab.com and my open-soruce repositories so far has been a hugely positive one so far! The migration process itself was completely painless - it just took a while since there were thousands of other developers doing the exact same thing I was :P

Updating my repositories and adjusting all the links & references has been a tedious process so far - but that's nothing that GitLab can really help me with - I've gotta do it myself :-) GitLab's documentation has been really helpful for those times when I've needed some assistance to figure something out, with plenty of GitLab CI examples available to get me started.

If there's one thing I'd change, it's the releases (or tags) system. The system itself is fine, but the way the tags are presented is horrible. The text doesn't even wrap properly! A /latest shortcut url would would be welcome too.

You can't attach release binaries to tags either, which is also rather annoying. There is a workaround though - you can link directly to the GitLab CI (Continuous-Integration) artifacts instead, which seems to work just fine for my purposes so far. If it doesn't work so well in the future, I'm probably going to have to find an alternative solution for hosting release binaries - at least until they implement the feature (if at all).

Other than that, the interface, while very different to GitHub's, does feel appropriately polished and suitably easy to use. If anything, I feel as though it's rather difficult to explore any of the existing repositories on GitLab - I hadn't realised until using GitLab just how useful the new repository tags GitHub have implemented are in exploring others' repositories. I'm sure that there's a 3rd-party website that enables one to explore the repositories on gitlab.com much more effectively - I just haven't found it yet.

The sidebar when viewing a repository is quite handy - but a little unwieldy at times. Similarly, the 2-3 layers of navigation directly below the repository tagline are also rather unwieldy, and difficult to tell their differing functions apart. Perhaps a rethink here would bring these 2 different parts of the user interface together in a more cohesive and usable fashion?

All in all, gitlab.com is a great service for hosting my open-source repositories. The continuous integration services provided are superb - and completely unparalleled in my (admittedly limited) experience. The interface is functional, for the most part, and gets the job done - there are just a few rough edges in places that could do with a slight rethink.

Enjoyed this? Have your own opinion about what's happened to GitHub? Found a better service? Comment below!

Routers: Essential, everywhere, and yet exasperatingly elusive

Now that I've finished my University work for the semester (though do have a few loose ends left to tie up), I've got some time on my hands to do a bunch of experimenting that I haven't had the time for earlier in the year.

In this case, it been tracking down an HTTP router that I used a few years ago. I've experimented with a few now (find-my-way, micro-http-router, and rill) - but all of them few something wrong with them, or feel too opinionated for my taste.

I'm getting slightly ahead of myself though. What's this router you speak of, and why is it so important? Well, it call comes down to application design. When using PHP, you can, to some extent, split your application up by having multiple files (though I would recommend filtering everything through a master index.php). In Node.JS, which I've been playing around with again recently, that's not really possible.

A comparison of the way PHP and Node.JS applications are structured. See the explanation below.

Unlike PHP, which gets requests handed to it from a web server like Nginx via CGI (Common Gateway Interface), Node.JS is the server. You can set up your very own HTTP server listening on port 9898 like this:

import http from 'http';
const http_server = http.createServer((request, response) => {
    response.writeHead(200, {
        "x-custom-header": "yay"
    });
    response.end("Hello, world!");
}).listen(9898, () => console.log("Listening on pot 9898"));

This poses a problem. How do we know what the client requested? Well, there's the request object for that - and I'm sure you can guess what the response object is for - but the other question that remains is how to we figure out which bit of code to call to send the client the correct response?

That's where a request router comes in handy. They come in all shapes and sizes - ranging from a bare-bones router to a full-scale framework - but their basic function is the same: to route a client's request to the right place. For example, a router might work a little bit like this:

import http from 'http';
import Router from 'my-awesome-router-library';

// ....

const router = new Router();

router.get("/login", route_login);
router.put("/inbox/:username", route_user_inbox_put);

const http_server = http.createServer(router.handler()).listen(20202);

Pretty simple, right? This way, every route can lead to a different function, and each of those functions can be in a separate file! Very cool. It all makes for a nice and neat way to structure one's application, preventing any issues relating to any one file getting too big - whilst simultaneously keeping everything orderly and in its own place.

Except when you're picky like me and you can't find a router you like, of course. I've got some pretty specific requirements. For one, I want something flexible and unopinionated enough that I can do my own thing without it getting in the way. For another, I'd like first-class support for middleware.

What's middleware you ask? Well, I've only just discovered it recently, but I can already tell that's its a very powerful method of structuring more complex applications - and devastatingly dangerous if used incorrectly (the spaghetti is real).

Basically, the endpoint of a route might parse some data that a client has sent it, and maybe authenticate the request against a backend. Perhaps a specific environment needs to be set up in order for a request to be fulfilled.

While we could do these things in the end route, it would clutter up the code in the end route, and we'd likely have more boilerplate, parsing, and environment setup code than we have actual application logic! The solution here is middleware. Think of it as an onion, with the final route application logic in the middle, and the parsing, logging, and error handling code as the layers on the outside.

A diagram visualising an application with 3 layers of middleware: an error handler, a logger, and a data parser - with the application  logic in the middle. Arrows show that a request makes its way through these layers of middleware both on the way in, and the way out.

In order to reach the application logic at the centre, an incoming request must first make its way through all the layers of middleware that are in the way. Similarly, it must also churn through the layers of middleware in order to get out again. We could represent this in code like so:

// Middleware that runs for every request
router.use(middleware_error_handler);
router.use(middleware_request_logger);

// Decode all post data with middleware
// This won't run for GET / HEAD / PUT / etc. requests - only POST requests
router.post(middleware_decode_post_data);

// For GET requestsin under `/inbox`, run some middleware
router.get("/inbox", middleware_setup_user_area);

// Endpoint routes
// These function just like middleware too (i.e. we could
// pass the request through to another layer if we wanted
// to), but that don't lead anywhere else, so it's probably
// better if we keep them separate
router.get("/inbox/:username", route_user_inbox);
router.any("/honeypot", route_spambot_trap);

router.get("/login", route_display_login_page);
router.post("/login", route_do_login);

Quite a neat way of looking at it, right? Lets take a look at some example middleware for our fictional router:

async function middleware_catch_errors(context, next) {
    try {
        await next();
    } catch(error) {
        console.error(error.stack);
        context.response.writeHead(503, {
            "content-type": "text/plain"
        });
        // todo make this fancier
        context.response.end("Ouch! The server encountered an error and couldn't respond to your request. Please contact bob at bob@bobsrockets.com!");
    }
}

See that next() call there? That function call there causes the application to enter the next layer of middleware. We can have as many of these layers as we like - but don't go crazy! It'll cause you problems later whilst debugging.....

What I've shown here is actually very similar to the rill framework - it just has a bunch of extras tagged on that I don't like - along with some annoying limitations when it comes to defining routes.

To that end, I think I'll end up writing my own router, since none of the ones I've found will do the job just right. It kinda fits with the spirit of the project that this is for, too - teaching myself new things that I didn't know before.

If you're curious as to how a Node.JS application is going to fit in with a custom HTTP + WebSockets server written in C♯, then the answer is a user management panel. I'm not totally sure where this is going myself - I'll see where I end up! After all, with my track record, you're bound to find another post or three showing up on here again some time soon.

Until then, Goodnight!

Found this useful? Still got questions? Comment below!

Achievement Get: Complete Degree!

Check out the strawberry I found in my greenhouse!

I've just finish my degree at University this week. I'm still waiting on results, but I thought I'd make a post about it documenting my thoughts so far before I forget (also, happy 300th post! Wow, have I reached that already?). Note that this doesn't mean the end of this blog - far from it! I'll be doing a masters this next academic year.

It's been a great journey to have the chance to go on. I feel like I've improved in so many different ways having gone to University. Make no mistake: University isn't for everyone (if you're considering it, make sure you do your research about all your options!) - but I've found that it's been right for me.

I'm glad that Rob Miles' suggestion of starting a blog has been a great investment of my time. For one, I've been able to document the things that I've been learning so that I can come back to them later, and read a more personalised guide to the thing I blogged about. I've also learnt a ton about Linux server management too - as I manage the server that this blog runs on entirely through the terminal (sorry, hackers who want to get into my non-existent management web interface - I know you're out there - you leave pawprints all over my server logs!). All very valuable experiences - I highly suggest that you start one too (you won't regret it. I promise!).

I've also found that my eyes have been opened in more ways than one whilst doing my degree - both to new ways of approaching problems, and new ways of solving them - and many other things that would take too long to list here). I've blogged about some of my favourite modules in this regard before - particularly Virtual Reality and Languages and Compilers.

Thanks to all the amazing people I've met along the way, I've ended up in a much better place than when I started.

Just another day: More spam, more defences

When post is released I'll be in an exam, but I wanted to post again about the perfectly fascinating spam situation here on my blog. I've blogged about fending off spam on here before (exhibits a, b, c), but I find the problem is detecting it in a transparent manner that you as the reader don't notice very interesting, so I think I'll write another post on the subject. I could use a service like Google's ReCAPTCHA, but that would be boring :P

Recently I've had a trio of spam comments make it all the way through my (rather extensive) checks and onto my blog here. I removed them, of course, but it still baffled me as to why they made it through.

It didn't take long to find out. When I was first implementing comments on here, I added a logger specifically for purposes such as this that saves everything about current environmental state to a log file for later inspection - for both comments that make it through, and those that don't. It's not available publically available, of course (but if you'd like to take a look, just ask and I'll consider it). Upon isolating the entries for the spam comments, I discovered a few interesting things.

  • The comment keys were aged 21, 21, and 17 seconds respectively (the lower limit I have set is 10 seconds)
  • All 3 comments claimed that they were Firefox 57
  • 2 out of 3 comments used HTTP 1.0 (even though they claimed to be Firefox 57, and despite my server offering HTTP/1.1 and HTTP/2.0)
  • All 3 comments utilised HTTPS
  • The IP Addresses that the comments came form were in Ukraine, Russia, and Canada (hey?) respectively
  • All 3 appear to be phishing scams, with a link leading to a likely malicious website
  • The 2 using HTTP/1.0 also asked my server to close the connection after sending a response
  • All 3 asked not to be tracked via the DNT HTTP header
  • The last comment had some really weird capitalisation. After consulting someone experienced on the subject, I learnt that the writer likely natively spoke an eastern language, such as Chinese

This was most interesting. From this, I can conclude:

  • The last comment was likely submitted by a Chinese operator - even though the source IP address is located in Ukraine
  • All three are spoofing their user agent string.
    • Firefox 57 uses HTTP/2.0 by default if you're really in a browser, and the spam comments utilised HTTP/1.0 and HTTP/1.1
    • Curiously, all of this took place over HTTPS. I'd be really curious to log which cipher was used for the connection here.
    • In light of this, if I knew more about HTTP client libraries, I could probably identify what software was really used to submit the spam comments (and possibly even what operating system it was running on). If you know, please comment below!

To combat this development, I thought of a few options. Firstly, raising the minimum comment age, whilst effective, may disrupt the user experience, which I don't want to do. Plus, the bot owners could just increase the delay even more. To that end, I decided not to do this.

Secondly, with the amount of data I've collected, I could probably write an AI that takes the environment in and spits out a 'spaminess' score, much like SpamAssassin and rspamd do for email. Perhaps a multi-weighted system would work, with a series of tests that add or take away from the final score? I might investigate upgrading my spam detection system to do this in the future, as it would not only block spam more effectively, but provide a more distilled overview of the characteristics of each comment submission than I have currently.

Lastly, I could block HTTP/1.0 requests. While not perfect (1 out of 3 requests used HTTP/1.1), it would still catch some more bots out without disrupting user experience - as normal browsers (include text-based ones IIRC) use HTTP/1.1 or above. HTTP/1.1 has been around since 1991 (27 years!), so if you're not using it by now - upgrade! For now, this is the best option I can see.

From today, if you try to submit a comment and get a HTTP 505 HTTP Version Not Supported error and see a message saying something like this:

You sent your request via HTTP/1.0, but this is not supported for submitting comments due to high volume of spam. Please retry with HTTP/1.1 or higher.

...then you'll have to upgrade and / or reconfigure your web browser. Please let me know (my email address is on the homepage) if this causes any issues for anyone, and I'll help you out.

Found this interesting? Know more about this? Got a better solution? Comment below!

Shift-Reduce Parser Part 2: Building Furniture (1)

Hello and welcome! I got a bit distracted by other things as you can tell, but I'm back with part 2 of my series on building a shift-reduce parser. If you're not sure what I'm talking about, then I'd advise reading part 1 first and then coming back here. It might be a good idea to re-read it anyway, juts to refresh your memory :-)

The same flowchart from last time, but with the parse table section highlighted.

Last time, we created some data classes to store the various rules and tokens that we'll be generating. Today, we're going to build on that and start turning a set of rules into a parse table. Let's introduce the rules we'll working with:

<start> ::= <expression>

<expression> ::= <expression> PLUS <value>
    | <term>

<term> ::= <term> DIVIDE <value>
    | <value>

<value> ::= <number>
    | BRACKET_OPEN <expression> BRACKET_CLOSE

<number> ::= DIGIT
    | <number> DIGIT

The above represents a very basic calculator-style syntax, which only supports adding and dividing. It's written in Backus-Naur Form, which is basically a standardised way of writing parsing rules.

To build a parse table, we first must understand what such a thing actually is. Let's take a look at an example:

state action goto
* + 0 1 $ E B
0 s1 s2 3 4
1 r4 r4 r4 r4 r4
2 r5 r5 r5 r5 r5
3 s5 s6 goal
4 r3 r3 r3 r3 r3
5 s1 s2 7
6 s1 s2 8
7 r1 r1 r1 r1 r1
8 r2 r2 r2 r2 r2

_(Source: Adapted from the LR Parser on Wikipedia.)_

While it looks complex at first, let's break it down. There are 3 parts to this table: The state, the action, and the goto. The action and goto represent What should happen if a particular token is encountered. In this case, the input stream contains both terminal (i.e. DIGIT, DIVIDE, BRACKET_CLOSE, etc. in the case of our BNF above) and non-terminal (i.e. number, term, expression, etc. in the case of our BNF above) symbols - if understand it correctly, so there are actually 2 parts to the table here to make sure that both are handled correctly.

We'll be connecting this to our lexer, which outputs only terminal symbols, so we should be ok I believe (if you know better, please post a comment below!). The state refers to the state in the table. As I've mentioned before, a given state may contain one or more configurations. It's these configurations that give rise to the actions in the table above, such as s2 (shift and then go to state 2) or r3 (reduce and jump to state 3).

To use the table, the parser must know what state it's in, and then take a look across the top row for the next symbol it has in the token stream. Once found, it can follow it down to figure out what action it should take, as explained above. If there isn't an action in the box, then there must be an error in the input, as the table doesn't tell us what to do in this situation. To that end, we should try and generate a meaningful error message to help the user to find the mistake in the input (or the developer in the parser!).

We're kind of getting ahead of ourselves here though. We need to build this table first, and to do that, we need to figure out which configurations go in which state. And, going down the rabbit hole, we need to know what a configuration is. Again, it's best if I demonstrate. Consider the following parsing rule from our example BNF at the beginning of this post:

<value> ::= BRACKET_OPEN <expression> BRACKET_CLOSE

A single configuration represent a possible state of the parser at a particular instant in time. I could split that above rule up like so:

<value> ::= BRACKET_OPEN * <expression> BRACKET_CLOSE
<value> ::= BRACKET_OPEN <expression> * BRACKET_CLOSE
<value> ::= BRACKET_OPEN <expression> BRACKET_CLOSE *

The asterisk represent where the parser might have gotten up to. Everything to the left is on the stack of the parser, and everything to the right hasn't happened yet.

Since this isn't a top-level rule (in our example that honour goes to the rule for the start non-terminal), the parser will never be in a position where the first item there doesn't exist yet on the stack, so we can ignore the configuration in which the asterisk would be to the left of BRACKET_OPEN.

Confused? Let me try and help here. Let's draw a diagram of how our parser is going to operate:

_(Source: Made by me, but adapted from the LR Parser article on Wikipedia)_

Basically, the parser will be taking in the input token stream and either shift a new terminal token onto the stack, or reduce one or more existing tokens on the stack into a single non-terminal token, which replaces those existing tokens on the stack. The configurations above represent possible states of the stack (the bit to the left of the asterisk), and possible directions that the parser could take when parsing (the bit to th right of the asterisk).

Finally, when the goal is reached, the output is returned to the caller (which, by the time we're done, should be a parse tree). Said tree can then be optimised and processed for whatever purpose we desire!

With this knowledge, we can deduce that we can build the entire table by recursing over the tree of rules from the start state. That way, we'll visit every rule that we'll need to parse everything required to reach the goal state by recursing over all the rules for all the non-terminals referenced by all the rules we visit. We could even generate a warning if we detect that some rules don't connect to this 'tree'. Here's a tree of our example ruleset from the beginning of this post:

A tree diagram of the rules detailed near the beginning of this post.

It's a bit spaghetti-ish, but it should be legible enough :P This gives us an idea as to how we're going to tackle this. Taking into account the data classes we created in the last post, we need to make sure we keep the following in mind:

  1. Since the main ShiftReduceParser class is going to hold the rules, the ParseTable class will need a reference to its parent ShiftReduceParser in order to query the rules.
  2. In light of this, the SHiftReduceParser should be responsible for satisfying any queries the ParseTable has about rules - the ParseTable should not have to go looking & filtering the rule list held by ShiftReduceParser itself.
  3. ParseTable will need a recursive method that will take a single top-level rule and recurse over it and its child rules (according to the tree I've talked about above)
  4. This method in ParseTale will need to be extremely careful it doesn't get stuck in a loop. To that end, it'll have to keep track of whether it's already processed a rule or not.
  5. It'll probably also have to keep track of which configurations it has added to the table class structure we defined in the last post to avoid adding rules twice.
  6. Once ParseTable has figured out all the configurations and grouped them all into the right states, it will then have to recurse over the generated table and fill in all the shift / reduce / goal action(s) - not forgetting about the links to the other states they should point to.

It's quite the laundry list! Thankfully, most of this is quite simple if we tackle it one step at a time. The most annoying bit is the grouping of configurations into states. This is done by looking at the token immediately before the asterisk in each configuration - all the configurations with the same token here will get grouped into the same state (while there are more complex algorithms that allow for more complex grammars, we'll stick with this for now as anything else makes my head hurt! Maybe in the future I'll look as figuring out precisely what kind of LR-style parser this is, and upgrading it to be a canonical LR(1) parser - the most advanced type I know of).

This is quite a lot to take in, so I think I'll leave this post here for you to digest - and we'll get to writing some code in the next one.

Found this useful? Spotted a mistake? Having trouble getting your head around it? Post a comment below!

Distributing work with Node.js

A graph of the data I generated by writing the scripts I talk about in this post. (Above: A pair of graphs generated with gnuplot from the data I crunched with the scripts I talk about in this blog post. Anti-aliased version - easier to pick details out [928.1 KiB])

I really like Node.js. For those not in the know, it's basically Javascript for servers - and it's brilliant at networking. Like really really good. Like C♯-beating good. Anyway, last week I had a 2-layer neural network that I wanted to simulate all the different combinations from 1-64 nodes in both layers for, as I wanted to generate a 3-dimensional surface graph of the error.

Since my neural network (which is also written in Node.js :P) has a command-line interface, I wrote a simple shell script to drive it in parallel, and set it going on a Raspberry Pi I have acting as a file server (it doesn't do much else most of the time). After doing some calculations, I determined that it would finish at 6:40am Thursday..... next week!

Of course, taking so long is no good at all if you need it done Thursday this week - so I set about writing a script that would parallelise it over the network. In the end I didn't actually include the data generated in my report for which I had the Thursday deadline, but it was a cool challenge nonetheless!

Server

To start with, I created a server script that would allocate work items, called nodecount-surface-server.js. The first job was to set things up and create a quick settings object and a work item generator:

#!/usr/bin/env node
// ^----| Shebang to make executing it on Linux easier

const http = require("http"); // We'll need this later

const settings = {
    port: 32000,
    min: 1,
    max: 64,
};
settings.start = [settings.min, settings.min];

function* work_items() {
    for(let a = settings.start[0]; a < settings.max; a++) {
        for(let b = settings.start[1]; b < settings.max; b++) {
            yield [a, b];
        }
    }
}

That function* is a generator. C♯ has them too - and they let a function return more than one item in an orderly fashion. In my case, it returns arrays of numbers which I use as the topology for my neural networks:

[1, 1]
[1, 2]
[1, 3]
[1, 4]
....

Next, I wrote the server itself. Since it was just a temporary script that was running on my local network, I didn't implement too many security measures - please bear this in mind if using or adapting it yourself!


function calculate_progress(work_item) {
    let i = (work_item[0]-1)*64 + (work_item[1]-1), max = settings.max * settings.max;
    return `${i} / ${max} ${(i/max*100).toFixed(2)}%`;
}

var work_generator = work_items();

const server = http.createServer((request, response) => {
    switch(request.method) {
        case "GET":
            let next = work_generator.next();
            let next_item = next.value;
            if(next.done)
                break;
            response.write(next_item.join("\t"));
            console.error(`[allocation] [${calculate_progress(next_item)}] ${next_item}`);
            break;
        case "POST":
            var body = "";
            request.on("data", (data) => body += data);
            request.on("end", () => {
                console.log(body);
                console.error(`[complete] ${body}`);
            })
            break;
    }
    response.end();
});
server.on("clientError", (error, socket) => {
    socket.end("HTTP/1.1 400 Bad Request");
});
server.listen(settings.port, () => { console.error(`Listening on ${settings.port}`); });

Basically, the server accepts 2 types of requests:

  • GET requests, which ask for work
  • POST requests, which respond with the results of a work item

In my case, I send out work items like this:

11  24

...and will be receiving work results like this:

11  24  0.2497276811644629

This means that I don't even need to keep track of which work item I'm receiving a result for! If I did though, I'd probably having some kind of ID-based system with a list of allocated work items which I could refer back to - and periodically iterate over to identify any items that got lost somewhere so I can add them to a reallocation queue.

With that, the server was complete. It outputs the completed work item results to the standard output, and progress information to the standard error. This allows me to invoke it like this:

node ./nodecount-surface-server.js >results.tsv

Worker

Very cool. A server isn't much good without an army of workers ready and waiting to tear through the work items it's serving at breakneck speed though - and that's where the worker comes in. I started writing it in much the same way I did the server:

#!/usr/bin/env node
// ^----| Another shebang, just like the server

const http = require("http"); // We'll need this to talk to the server later
const child_process = require("child_process"); // This is used to spawn the neural network subprocess

const settings = {
    server: { host: "172.16.230.58", port: 32000 },
    worker_command: "./network.js --epochs 1000 --learning-rate 0.2 --topology {topology} <datasets/acw-2-set-10.txt 2>/dev/null"
};

That worker_command there in the settings object is the command I used to execute the neural network, with a placeholder {topology} which we find-and-replace just before execution. Due to obvious reasons (no plagiarism thanks!) I can't release that script itself, but it's not necessary to understand how the distributed work item systme I've written works. It could just as well be any other command you like!

Next up is the work item executor itself. Since it obviously takes time to execute a work item (why else would I go to such lengths to process as many of them at once as possible :P), I take a callback as the 2nd argument (it's just like a delegate or Action in C♯):


function execute_item(data, callback) {
    let command = settings.worker_command.replace("{topology}", data.join(","));
    console.log(`[execute] ${command}`);
    let network_process = child_process.exec(command, (error, stdout, stderr) =>  {
        console.log(`[done] ${stdout.trim()}`);
        let result = stdout.trim().split(/\t|,/g);
        let payload = `${result[0]}\t${result[1]}\t${result[5]}`;

        let request = http.request({
            hostname: settings.server.host,
            port: settings.server.port,
            path: "/",
            method: "POST",
            headers: {
                "content-length": payload.length
            }
        }, (response) => {
            console.log(`[submitted] ${payload}`);
            callback();
        });
        request.write(payload);
        request.end();
    });
}

In the above I substitute in the work item array as a comma-separated list, execute the command as a subprocess, report the result back to the server, and then call the callback. To report the result back I use the http module built-in to Node.JS, but if I were tidy this up I would probably use an npm package like got instead, as it simplifies the code a lot and provides more features / better error handling / etc.

A work item executor is no good without any work to do, so that's what I tackled next. I wrote another function that fetches work items from the server and executes them - wrapping the whole thing in a Promise to make looping it easier later:


function do_work() {
    return new Promise(function(resolve, reject) {
        let request = http.request({
            hostname: settings.server.host,
            port: settings.server.port,
            path: "/",
            method: "GET"
        }, (response) => {
            var body = "";
            response.on("data", (chunk) => body += chunk);
            response.on("end", () => {
                if(body.trim().length == 0) {
                    console.error(`No work item received. We're done!`);
                    process.exit();
                }
                let work_item = body.split(/\s+/).map((item) => parseInt(item.trim()));
                console.log(`[work item] ${work_item}`);
                execute_item(work_item, resolve);
            });
        });
        request.end();
    });
}

Awesome! It's really coming together. Doing just one work item isn't good enough though, so I took it to the next level:

function* do_lots_of_work() {
    while(true) {
        yield do_work();
    }
}

// From https://starbeamrainbowlabs.com/blog/article.php?article=posts/087-Advanced-Generators.html
function run_generator(g) {
    var it = g(), ret;

    (function iterate() {
        ret = it.next();
        ret.value.then(iterate);
    })();
}

run_generator(do_lots_of_work);

Much better. That completed the worker script - so all that remained was to set it going on as many machines as I could get my hands on, sit back, and watch it go :D

I did have some trouble with crashes at the end because there was no work left for them to do, but it didn't take (much) fiddling to figure out where the problem(s) lay.

Each instance of the worker script can max out a single core of a machine, so multiple instances of the worker script are needed per machine in order to fully utilise a single machine's resources. If I ever need to do this again, I'll probably make use of the built-in cluster module to simplify it such that I only need to start a single instance of the worker script per machine instance of 1 for each core.

Come to think of it, it would have looked really cool if I'd done it at University and employed a whole row of machines in a deserted lab doing the crunching - especially since it was for my report....

Liked this post? Got an improvement? Comment below!

AT24C64 EEPROM and the Arduino

For a project of mine I've bought a bunch of parts. One of those are a bunch of AT24C64 EEPROM chips - which are basically really small SD cards which, in this case, can store 64 KiB of data - even when the power is switched off, as you'd expect.

I ended up having a bit of trouble getting it to work though, as the Arduino IDE appears to have been abandoned and I don't think it's still in development. Still, it works well enough. Anyway, I thought I'd document my findings here for future reference, and to save you a bit of trouble if you find yourself in a similar situation!

The first issue I ran into was in trying to get the associated library to work. I kept getting errors like these:

sketch/eeprom.ino.cpp.o:(.text.loop+0x1c): undefined reference to `AT24CX::writeChars(unsigned int, char*, int)'
sketch/eeprom.ino.cpp.o:(.text.loop+0x20): undefined reference to `AT24CX::readChars(unsigned int, char*, int)'
sketch/eeprom.ino.cpp.o:(.text.loop+0x49): undefined reference to `AT24CX::writeChars(unsigned int, char*, int)'
sketch/eeprom.ino.cpp.o: In function `loop':

Strange. I thought I'd added the #include "lib/AT24Cx/AT24CX.h" to the top? Sure enough, I had. It turns out that the problem actually lay in the fact that I'd used a git submodule to bring in the AT24Cx library, such that the library was not located in the same folder as the .ino file - so the Arduino IDE, in all its wisdom, decided that including the library's .cpp files was hardly necessary O.o

The solution I found was to #include the .cpp explicitly like so:

#include "lib/AT24Cx/AT24CX.cpp"

The other issue I stumbled across was that it couldn't find my EEPROM chip via I2C. Even the demo I2C scanner couldn't find it! It turned out, after searching up a storm on DuckDuckGo, that I needed a pair of 1kΩ resistors stretching from the I2C pins tot he +5V power rail. Here's a diagram I created in Fritzing to show you what I mean:

A circuit diagram showing my wiring for the AT24C64. Note the 1KΩ resistors going form the SCL and SDA pins to the +5V power rail in the breadboard.

(svg, fritzing file)

As usual with the various arduino test programs I find / write, you can get a hold of them in my main arduino repository on my personal git server.

Deep Sleep on ESP-Based Chips

If you're interested in the Arduino ecosystem, you've no doubt come across the Wemos family of boards. Based on the ESP8266, they have WiFi and TCP / UDP support built in! While that's very cool indeed for such a low-power device, in this post I'll be focusing on another cool aspect of the chipset, as I'm going to need to for a project in the nearish future (which I might blog about too!).

Curiously, the ESP chipset carries a unique ability to go into so-called 'deep sleep', which turns off everything but an internal counter, which emits a pulse on a specified pin when the sleep time is up. By wiring this specified pin to the RST (Reset) pin with a jumper cable, we can get it to automagically wake itself up after the deep sleep cycle is completed.

A Wemos with the aforementioned cable running from the D0 pin tot he RST pin.

This is a lot simpler than the sleep modes available on other (non-ESP) chips - which are explained here for those interested. Here's an example:

void setup() {
    Serial.begin(9600);

    Serial.print("Initialising - ");

    pinMode(D0, WAKEUP_PULLUP);

    Serial.println("done");

    Serial.println("Waiting: ");
    for(int i = 0; i < 5; i++) {
        delay(1000);
        Serial.print(".");
    }
    Serial.println();

    Serial.println("Entering deep sleep. Goodnight!");
    ESP.deepSleep(5 * 1000000);
}

void loop() {

}

Nice and easy, right? You can see how you'd need to factor this into the design of your program before you get too far into it. Note that I multiply the number of seconds by 1000000 - this is because the sleep time is specified in microseconds - not milliseconds or seconds.

When in deep sleep, people have managed to reduce it's power consumption down to ~100µA(!) - I'll update this post once I manage to make some measurements of my own.

That's about everything I wanted to mention - just to remind myself on how to do it in a few weeks time :-)

Source and Further Reading

Found this useful? Got a question? Comment below!

Representing clickable links with awkward characters in LaTeX

Hello again! As this Semester draws to a close, I thought I'd make a quick post about links in references in LaTeX. I've discovered recently with the help of a lecturer (thank you!) how properly represent links in LaTeX references - as I've been having some issues with getting the ones with underscores _ and tildes ~ displaying correctly.

For example, if I wanted to cite the Vulkan specification, I might do this in my BibTeX file:

@Misc{Vulkan2016,
    author = {{The Khronos Vulkan Working Group}},
    title = {Vulkan 1.0.31 - A Specification},
    howpublished = {Available online: https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html [Accessed 15/10/2016]},
    year = {2016},
}

This is fine, but that link isn't clickable - and if it contained any awkward characters as described above, I might get weird compilation errors! The solution is to make sure you're include hyperref in your main LaTeX file (in my report I do \usepackage[hidelinks]{hyperref} in the top-level .tex file), and then do this:

@Misc{Vulkan2016,
    author = {{The Khronos Vulkan Working Group}},
    title = {Vulkan 1.0.31 - A Specification},
    howpublished = {Available online: \url{https://www.khronos.org/registry/vulkan/specs/1.0/xhtml/vkspec.html} [Accessed 15/10/2016]},
    year = {2016},
}

Problem solved! :D

Found this useful? Still having issues? Got an even better solution? Post a comment below!

Shift-reduce Parser Part 1: First Steps

Now that I've done the Languages and Compilers module at University, it's opened my eyes to a much better and more extensible way of handling complex text in a way that can easily be read by any subsequent code I write. To that end, I've found that at least 3 different various projects of mine could benefit from the inclusion of a shift-reduce parser, but I haven't been able to track one down for C♯ yet.

With this in mind, I thought to myself: "Why not build one myself?" Sure, my Lecturer didn't go into too many details as to how they work, but it can't be that difficult, can it? Oh, I had no idea.....

In this mini-series, I'm going to take you through the process of building a shift-reduce parser of your very own. As I write this, I haven't actually finished mine yet - I've just got to the important milestone of building a parse table! Thankfully, that's going to be a few posts away, as there's a fair amount of ground to cover until we get to that point.

Warning: This series is not for the faint of heart! It's rather complicated, and extremely abstract - making it difficult to get your head around. I've had great difficulty getting mine around it - and ended up writing it in multiple stages. If you want to follow along, be prepared for lots of research, theory, and preparation!

Let's start out by taking a look at what a shift-reduce parser does. If you haven't already, I'd recommend reading my previous compilers 101 post, which explains how to write a compiler, and the different stages involved. I'd also recommend checking out my earlier post on building a lexer, as it ties in nicely with the shift-reduce parser that we'll be building.

An overview of how a shift-reduce works.

In short, a shift-reduce parser compiles a set of BNF-style rules into a Parse Table, which it then utilises as a sort of state-machine when parsing a stream on input tokens. We'll take a look at this table compilation process in a future blog post. In this post, let's set up some data structures to help us along when we get to the compilation process in the next blog post. Here's the class structure we'll be going for:

An overview of the class structure we'll be creating in this blog post.

Let's start with a class to represent a single token in a rule:

public enum ParserTokenClass
{
    Terminal,
    NonTerminal
}

public struct ParserToken
{
    public readonly ParserTokenClass Class;
    public readonly string Type;

    public ParserToken(ParserTokenClass inTokenType, string inType)
    {
        Class = inTokenType;
        Type = inType;
    }

    public override bool Equals(object obj)
    {
        ParserToken otherTokenType = (ParserToken)obj;
        return Class == otherTokenType.Class && Type == otherTokenType.Type;
    }
    public override int GetHashCode()
    {
        return $"{Class}:{Type}".GetHashCode();
    }

    public override string ToString()
    {
        string terminalDisplay = Class == ParserTokenClass.Terminal ? "T" : "NT";
        return $"[ParserToken {terminalDisplay}: {Type}]";
    }

    public static ParserToken NonTerm(string inType)
    {
        return new ParserToken(ParserTokenClass.NonTerminal, inType);
    }
    public static ParserToken Term(string inType)
    {
        return new ParserToken(ParserTokenClass.Terminal, inType);
    }
}

Pretty simple! A token in a rule can either be a terminal (basically a token straight from the lexer), or a non-terminal (a token that the parser reduces a set of other tokens into), and has a type - which we represent as a string. Unfortunately due to the complex comparisons we'll be doing later, it's a huge hassle to use an enum with a template class as I did in the lexer I built that I linked to earlier.

Later on (once we've built the parse table), we'll extend this class to support attaching values and other such pieces of information to it, but for now we'll leave that out to aid simplicity.

I also override Equals() and GetHashCode() in order to make comparing tokens easier later on. Overriding ToString() makes the debugging process much easier later, as we'll see in the next post!

With a class to represent a token, we also need one to represent a rule. Let's create one now:

public class ParserRule
{
    /// <summary>
    /// A function to call when a reduce operation utilises this rule.
    /// </summary>
    public Action MatchingAction;
    public ParserToken LeftSide;
    public ParserToken[] RightSideSequence;

    public ParserRule(Action inMatchingAction, ParserToken inLeftSide, params ParserToken[] inRightSideSequence)
    {
        if (inLeftSide.Class != ParserTokenClass.NonTerminal)
            throw new ArgumentException("Error: The left-hand side must be a non-terminal token type.");

        MatchingAction = inMatchingAction;
        LeftSide = inLeftSide;
        RightSideSequence = inRightSideSequence;
    }

    public bool RightSideSequenceMatches(IEnumerable<ParserToken> otherRhs)
    {
        int i = 0;
        foreach (ParserToken nextToken in otherRhs)
        {
            if (!nextToken.Equals(RightSideSequence[i]))
                return false;

           i++;
        }
        return true;
    }

    public override string ToString()
    {
        StringBuilder result = new StringBuilder();
        result.Append($"ParserRule: {LeftSide} = ");
        foreach (ParserToken nextToken in RightSideSequence)
            result.Append($" {nextToken}");
        result.Append(";");
        return result.ToString();
    }
}

The above represents a single parser rule, such as <number> ::= <digit> <number>. Here we have the token on the left-hand-side (which we make sure is a non-terminal), and an array of tokens (which can be either terminal or non-terminal) for the right-hand-side. We also have an Action (which is basically a lamba function) that we'll call when we match against the rule, so that we have a place to hook into when we write code that actually does the tree building (not to be confused with the shift-reduce parser itself).

Here I also add a method that we'll need later, which compares an array of tokens against the current rule, to see if they match - and we override ToString() here again to aid debugging.

Now that we can represent tokens and rules, we can start thinking about representing configurations and states. Not sure what these are? All will be explained in the next post, don't worry :-) For now, A state can be seen as a row in the parse table, and it contains a number of configurations - which are like routes to different other states that the parser decides between, depending where it's gotten to in the token stream.

public enum ParseTableAction
{
    Shift,
    Reduce,
    Goal,
    Error
}

public class ParseTableConfiguration
{
    public readonly ParserRule Rule;
    public readonly int RhsPosition;

    public ParseTableAction LinkingAction = ParseTableAction.Error;
    public ParseTableState LinkingState = null;

    public ParserToken TokenAfterDot {
        get {
            return Rule.RightSideSequence[RhsPosition];
        }
    }
    public ParserToken TokenBeforeDot {
        get {
            return Rule.RightSideSequence[RhsPosition - 1];
        }
    }

    /// <summary>
    /// Whether this configuration is the last in the sequence of configurations for the specified rule or not.
    /// </summary>
    /// <value><c>true</c> if is last in rule; otherwise, <c>false</c>.</value>
    public bool IsLastInRule {
        get {
            return RhsPosition > Rule.RightSideSequence.Length - 1;
        }
    }

    public ParseTableConfiguration(ParserRule inRule, int inRhsPosition)
    {
        Rule = inRule;
        RhsPosition = inRhsPosition;
    }

    public IEnumerable<ParserToken> GetParsedRhs()
    {
        return Rule.RightSideSequence.TakeWhile((ParserToken token, int index) => index <= RhsPosition);
    }

    public bool MatchesRhsSequence(ParserRule otherRule)
    {
        int i = 0;
        foreach (ParserToken nextToken in otherRule.RightSideSequence)
        {
            if (i > RhsPosition)
                break;

            if (!nextToken.Equals(otherRule.RightSideSequence[i]))
                return false;

            i++;
        }
        return true;
    }

    public override bool Equals(object obj)
    {
        ParseTableConfiguration otherConfig = obj as ParseTableConfiguration;
        if (otherConfig == null) return false;
        return Rule == otherConfig.Rule && RhsPosition == otherConfig.RhsPosition;
    }
    public override int GetHashCode()
    {
        return $"{Rule}:{RhsPosition}".GetHashCode();
    }

    public override string ToString()
    {
        StringBuilder result = new StringBuilder();

        result.Append($"Configuration: {LinkingAction} ");
        if (LinkingState != null)
            result.Append($"to State {LinkingState.Id} ");
        result.Append($"{Rule.LeftSide} = ");

        for (int i = 0; i <= Rule.RightSideSequence.Length; i++)
        {
            if (i == RhsPosition)
                result.Append(" * ");
            if (i == Rule.RightSideSequence.Length)
                continue;
            result.Append($"{Rule.RightSideSequence[i]} ");
        }
        result.Append(";");
        return result.ToString();
    }
}

This class is slightly more complicated. First, we define an enum that holds information about what the parser should do if it chooses this configuration. Then, we declare the configuration class itself. This entails specifying which parse rule we're deriving the configuration from, and both which tokens in the right-hand-side of the rule should have been parsed already, and which should still be somewhere in the token stream. Again, I'll explain this in more detail in the next post!

Then, we declare a few utility methods and properties to fetch different parts of the configuration's rule, such as the token to the immediate left and right of the right-hand-side position (which was represented as a dot . in the book I followed), all the tokens before the dot ., and whether a given rule matches this configuration in the basis of everything before the dot ..

Finally, I continue with the trend of overriding the equality checking methods and ToString(), as it makes a world of difference in the code coming up in future blog posts!

Now that we've got a class for configurations, the last one on our list is one for the states themselves. Let's do that now:

public class ParseTableState
{
    public readonly ParseTable ParentTable;

    public int Id {
        get {
            return ParentTable.FindStateId(this);
        }
    }

    public List<ParseTableConfiguration> Configurations = new List<ParseTableConfiguration>();

    public ParseTableState(ParseTable inParentTable)
    {
        ParentTable = inParentTable;
    }

    public override string ToString()
    {
        StringBuilder result = new StringBuilder();
        foreach(ParseTableConfiguration nextConfiguration in Configurations)
            result.AppendLine($"     - {nextConfiguration}");
        return result.ToString();
    }
}

Much simpler than the configuration rule class, right? :P As I mentioned earlier, all a state consists of is a list of configurations in that state. In our case, we'll be assigning an id to the states in our parse table, so I include a property here that fetches a state's id from the parent parse table that it's part to make the later code as simple as possible.

Still with me? Congratulations! You've got the beginnings of a shift-reduce parser. Next time, we'll expand on some of theory behind the things I've touched on in this post, and possibly look at building the start of the recursive parse table builder itself.

Found this interesting? Confused about something? Comment below!

Art by Mythdael