Starbeamrainbowlabs

Stardust
Blog

The Graphics Pipeline

Since the demonstration for my 3D work is tomorrow and I keep forgetting the details of the OpenGL graphics pipeline, I thought I'd write a blog post about it in the hopes that I'll remember it.

In case you didn't know, OpenGL uses a pipeline system to render graphics. Basically, your vertices and other stuff go in one end, and a video stream gets displayed at the other. This pipeline is made up of number of stages. Each stage has it's own shader, too:

The OpenGL pipeline.

There are rather a lot of stages here, so I've made this table that lists all the different shaders along with what they do:

Stage Programmable? Function
Vertex Shader Yes Raw vertex manipulation.
Hull Shader No Aka the Tessellation Control Shader. Determines control points for the tessellator. Although it's fixed function, it's highly configurable.
Tessellator No Subdivides surfaces and adds vertices using the control points specified in the hull shader.
Domain Shader Yes Aka the Tessellation Evaluation Shader. Adds details to vertices. Example uses include simplifying models that are far away from the camera. Has access to the control points outputted by the hull shader.
Geometry Shader Yes Superseded by the tessellator (see above). Very slow.
Rasterisation No Fixed function. Converts the models etc. into fragments ready for the fragment shader.
Fragment Shader Yes Insanely flexible. This is the shader that is used to add most, if not all, special effects. Lighting and shadows are done here too. Oddly enough, Microsoft decided that they would call it the "Pixel Shader" in DirectX and not the fragment shader.
Compute Shader Yes Not part of the graphics pipeline. Lets you utilise the power of the matrix calculator graphics card to do arbitrary calculations.

The tessellator is very interesting. It replaces the geometry shader (which, although you can technically use, you really shouldn't), and allows you to add details to your model on the GPU, thereby reducing the number of vertices you send to graphics card. It also allows you to customize your models before they hit rasterisation and the fragment shader, so you could simplify those models that are further away, for instance.

As an example in our lecture, we were shown the Haven Benchmark. Our lecturer turned the tessellator on and off to show us what it actually does. Since you can't see what I saw, here's an animation I made showing you the difference:

The other pipeline to be aware of is the coordinate pipeline. This pipeline specifies how coordinates are transformed from one space to another. Here's another diagram:

The coordinate pipeline.

Again, this looks complicated, but it isn't really. A similar process would be followed for 2D graphics as well as 3D ones. If you take it one step at a time, it doesn't seem so bad.

Converting between all these different coordinate spaces is best left up to the vertex shader - it's much easier to shove a bunch of transformation matrices at it and get it to do all the calculations for you. It's so easy, you can do it in just 11 lines of vertex shader code:

#version 330
uniform mat4 uModel; // The model matrix
uniform mat4 uView; // The view matrix
uniform mat4 uProjection; // The projection matrix

in vec3 vPosition; // The position of the current vertex

void main() 
{ 
    gl_Position = vec4(vPosition, 1) * uModel * uView * uProjection;
}

If you made it this far, congratulations! That concludes our (rather long) journey through the graphics pipeline and its associated coordinate spaces. We looked at each of the various shaders and what they do, and learnt about each of the different coordinate spaces involved and why they are important.

I hope that someone besides myself found it both useful and educational! If you did, or you have any questions, please post a comment below. If you have spotted a mistake - please correct me in the comments below too! I try to make sure that posts like this one can be used by both myself and others as a reference in the future.

Sources

Tag Cloud

3d 3d printing account algorithms android announcement architecture archives arduino artificial intelligence artix assembly async audio automation backups bash batch blog bookmarklet booting bug hunting c sharp c++ challenge chrome os cluster code codepen coding conundrums coding conundrums evolved command line compilers compiling compression containerisation css dailyprogrammer data analysis debugging demystification distributed computing documentation downtime electronics email embedded systems encryption es6 features ethics event experiment external first impressions future game github github gist gitlab graphics hardware hardware meetup holiday holidays html html5 html5 canvas infrastructure interfaces internet interoperability io.js jabber jam javascript js bin labs learning library linux lora low level lua maintenance manjaro network networking nibriboard node.js operating systems own your code pepperminty wiki performance phd photos php pixelbot portable privacy problem solving programming problems projects prolog protocol protocols pseudo 3d python reddit redis reference releases rendering resource review rust searching secrets security series list server software sorting source code control statistics storage svg talks technical terminal textures thoughts three thing game three.js tool tutorial twitter ubuntu university update updates upgrade version control virtual reality virtualisation visual web website windows windows 10 xmpp xslt

Archive

Art by Mythdael