Starbeamrainbowlabs

Stardust
Blog


Archive

Mailing List Articles Atom Feed Comments Atom Feed Twitter Reddit Facebook

Tag Cloud

3d account algorithms announcement architecture archives arduino artificial intelligence artix assembly async audio bash batch blog bookmarklet booting c sharp c++ challenge chrome os code codepen coding conundrums coding conundrums evolved command line compilers compiling css dailyprogrammer debugging demystification distributed computing downtime electronics email embedded systems encryption es6 features event experiment external first impressions future game github github gist graphics hardware hardware meetup holiday html html5 html5 canvas infrastructure interfaces internet io.js jabber javascript js bin labs learning library linux low level lua maintenance manjaro network networking node.js operating systems performance photos php pixelbot portable privacy programming problems project projects prolog protocol protocols pseudo 3d python reddit reference release releases resource review rust secrets security series list server software sorting source code control statistics svg technical terminal textures three thing game three.js tool tutorial tutorials twitter ubuntu university update updates upgrade version control virtual reality virtualisation visual web website windows windows 10 xmpp xslt

Demystifying microphones: The difference between dynamics and condensers

Welcome back to another demystification post! This time, it's about microphones. I had a question recently about microphones and phantom power, and after doing some rather extensive research on the subject (unintentionally of course :P), I thought it a waste not to summarise it here.

Basically, phantom power is a +48V direct current that's transmitted through a microphone cable (not the kind you plug into your laptop I don't think - the big chunky ones). It's required by condenser microphones (though some use a battery instead), which have a pair of films (called diaphragms) which vibrate. When a current is passed through from one plate to the other, the physical sound gets converted into an electrical signal we can use.

A diagram of how a condenser microphone works on a whiteboard. Full explanation below.

Condenser microphones are much more sensitive than their dynamic microphone counterparts. They are able to better represent a wider range of frequencies - but as a result of this heightened sensitivity, you normally need a pop filter if you're recording vocals. In addition, they don't tend to perform too well in loud environments, such as concerts. Finally, they tend to be more expensive than dynamic microphones, too.

A diagram of how a dynamic microphone works on a whiteboard. Full explanation below.

Dynamic microphones, on the other hand, don't require phantom power. They are basically a loudspeaker in reverse and generate the current themselves - they have a single diaphragm that's attached to a metal core - which in turn has a coil of wire around it. When the diaphragm vibrates, so does the metal core - and as you can probably guess, a current is induced in the coil, as metal cores tend to do when inside coils of conveniently placed wires.

While they are better in loud environments (like concerts and drum kits), dynamic microphones aren't so good at representing a wide ranges of frequencies - and as such they are usually tailored to be pick up a specific frequency range better than others. Furthermore, they aren't as sensitive in general as your average condenser microphone, so they don't get on particularly well with very quiet sounds either.

Which you use generally depends on what you want to do. If you've got an overly enthusiastic drummer in a rock concert, you probably want a dynamic microphone. On the other hand, if you're trying to record the song of a cricket on a still summer's evening, you probably want to keep a condenser microphone handy.

I'm not an audio expert, so I might have made a few mistakes here and there! If you spot one, please do let me know in the comments below :-)

Sources and Further Reading

My new Raspberry Pi 3!

My new Raspberry Pi 3!

I've got a little project in mind - I'd like to build a little storage server to back some things up to. It doesn't have to be anything terribly fancy, provide blisteringly fast speeds, or have store a huge number of files, so I've opted for a Raspberry Pi 3 to power the thing. It arrived just recently, and since the service I got from Pimoroni was excellent, I thought I'd post about it here. If you're after some bits for your raspberry pi, then they are a good reputable place to get them from.

In order to access the storage space on the server, I'll be configuring some samba shares (linux's implementation of Windows file shares, which is completely interoperable). Would anyone be interested in a tutorially kind of post on how you configure Samba? Let me know in the comments below.

Art by Mythdael